

 [image: DLRN Logo]

Welcome to DLRN’s documentation!

Contents:

	Introduction

	Installation
	Configuration

	Configuring your httpd

	Database support

	Repositories
	Building new packages and repositories

	DLRN repository: delorean-deps

	DLRN repository: current

	DLRN repository: consistent

	DLRN repository: current-passed-ci

	Usage
	Parameters

	Quickstart single package build

	Full build

	Advanced single package build

	Output and log files

	Importing commits built by another DLRN instance

	Purging old commits

	Building only the last commit

	Troubleshooting
	Other requirements

	API issues

	API definition
	General information

	API calls

	Running the API server using WSGI

	User management

	GraphQL information
	GraphQL schema

	Querying the GraphQL endpoint

	Contributing
	Setting up a development environment in an OpenStack VM using cloud-init

	Setting up a development environment manually

	Submitting pull requests

	Generating the documentation

	DLRN internals
	Main concepts

	Directory structure

	High level algorithm

	Configuration

	Package Info Drivers

	Package Build Drivers

	Building packages

	Hashed yum repositories

	Component support

	Post-build actions

	Error reporting

	API internals

Indices and tables

	Index

	Module Index

	Search Page

Introduction

DLRN builds and maintains yum repositories following Openstack’s upstream repositories.

Installation

Installing prerequisites (CentOS 7):

$ sudo yum install git createrepo python-virtualenv mock gcc redhat-rpm-config rpmdevtools httpd \
 libffi-devel openssl-devel

Installing prerequisites (CentOS 8 or Fedora):

$ sudo yum install git createrepo python3-virtualenv mock gcc redhat-rpm-config rpmdevtools httpd \
 libffi-devel openssl-devel

Add the user you intend to run as to the mock group:

$ sudo usermod -a -G mock $USER
$ newgrp mock
$ newgrp $USER

If you want to serve the built packages and the status reports:

$ sudo systemctl start httpd

Install DLRN:

$ pip install dlrn

Or, if you have virtualenv installed:

$ virtualenv dlrn-venv
$ source dlrn-venv/bin/activate
$ pip install dlrn

The httpd module is not strictly required, DLRN does not use it. However, it will output
it’s results in a way that is suitable for a web-server to serve. This means you can easily set up
a web-server to serve the finished .rpm and .log files.

Configuration

Configuration is done in an INI-file. An example file called projects.ini is included.
The configuration file looks like this:

[DEFAULT]
datadir=./data
scriptsdir=./scripts
configdir=
baseurl=http://trunk.rdoproject.org/centos7/
distro=rpm-master
source=master
target=centos
project_name=RDO
smtpserver=
reponame=delorean
templatedir=./dlrn/templates
maxretries=3
pkginfo_driver=dlrn.drivers.rdoinfo.RdoInfoDriver
build_driver=dlrn.drivers.mockdriver.MockBuildDriver
tags=
rsyncdest=
rsyncport=22
workers=1
gerrit_topic=rdo-FTBFS
database_connection=sqlite:///commits.sqlite
fallback_to_master=1
nonfallback_branches=^master$,^rpm-master$,^rhos-
coprid=account/repo
release_numbering=0.date.hash
release_minor=0
custom_preprocess=
include_srpm_in_repo=true
keep_changelog=false
use_components=false
deps_url=

	datadir is the directory where the packages and repositories will be
created. If not set, it will default to ./data on the parent directory
of where DLRN is installed.

	scriptsdir is the directory where scripts utilized during the build and
test process are located. If not set, it will default to ./scripts on the
parent directory of where DLRN is installed.

	configdir is the directory where additional configuration files used by
the build process are located, such as base mock configurations. If not set,
it defaults to the value of scriptsdir.

	baseurl is the URL to the data-directory, as hosted by your web-server.
Unless you are installing DLRN for local use only, this must be a publicly
accessible URL.

	distro is the branch to use for building the packages.

	source is the branch to use from the upstream repository.

	target is the distribution to use for building the packages (centos,
fedora or redhat, provided that you have the right content).

	project_name name of the project for which DLRN is building RPMs.
This name is used to render various templates (emails, web pages).

	smtpserver is the address of the mail server for sending out notification
emails. If this is empty no emails will be sent out. If you are running DLRN
locally, then do not set an smtpserver.

	reponame name of the directory that contains the generated repository.

	templatedir path to the directory that contains the report templates and
stylesheets. If not set, it will default to ./templates under the directory
where DLRN is installed.

	maxretries is the maximum number of retries on known errors before
marking the build as failed. If a build fails, DLRN will check the log files
for known, transient errors such as network issues. If the build fails for
that reason more than maxretries times, it will be marked as failed.

	gerrit if set to anything, instructs dlrn to create a gerrit review when
a build fails. See next section for details on how to configure gerrit to
work.

	If gerrit is set, then gerrit_topic will define the Gerrit topic to
use when a review is opened.

	tags is used to filter information received to decide what packages are
built. Should be set to a release name (e.g. mitaka) to instruct the builder
to only show packages with that release tag.

	rsyncdest if set, specifies a destination path where the hashed
repository directories created by DLRN will be synchronized using rsync,
after each commit build. An example would be
root@backupserver.example.com:/backupdir. Make sure the user running
DLRN has access to the destination server using passswordless SSH.

	rsyncport is the SSH port to be used when synchronizing the hashed
repository. If rsyncdest is not defined, this option will be ignored.

	workers is the number of parallel build processes to launch. When using
multiple workers, the mock build part will be handled by a pool of processes,
while the repo creation and synchronization will still be sequential.

	The database_connection string defines a database connection string. By
default, a local SQLite3 database is used, but it is also possible to set up
an external database.

	fallback_to_master defines the fallback behavior when cloning Git
repositories.

	if dlrn fails to clone the branch defined in source dlrn parameter, it tries
to clone tag <release>-eol if it exists. If it does not, it checks the
fallback_to_master parameter. With the default value of 1, DLRN will fall
back to the master or main branch.

	if dlrn fails to clone a branch named <name>-rdo, it assumes it is a
distgit and will try to fallback to rpm-master if parameter
fallback_to_master is set to 1.

	If dlrn fails to checkout a branch different to the one defined in source
parameter and the name does not ends with -rdo, it will fail to build.

	nonfallback_branches defines a list of regular expressions of branches for
source and distgit repositories that should never fall back to other branches,
even if not present in the repository. This is used when we want to avoid certain
type of fallback that could cause issues in our environment.

The default value is ^master$,^rpm-master$, which means that branches named
master or rpm-master will never try to fall back.

	pkginfo_driver defines the driver to be used to manage the distgit
repositories. Following drivers are available:

	dlrn.drivers.rdoinfo.RdoInfoDriver, which uses information provided by
rdoinfo [https://github.com/redhat-openstack/rdoinfo] to determine the
distgit repo location and information.

	dlrn.drivers.downstream.DownstreamInfoDriver, which uses information
provided by a distroinfo repo such as
rdoinfo [https://github.com/redhat-openstack/rdoinfo]
while reusing distro_hash and commit_hash from a remote
versions.csv file specified by versions_url config option in the
[downstream_driver] section. It will also use a separate distgit to
build the driver, as well as a downstream source git. The distgit URL
will be defined by the downstream_distgit_base URL + the package name,
and the distgit branch to use will be defined by the downstream_distro_branch
variable.

	dlrn.drivers.gitrepo.GitRepoDriver, which uses a single Git repository
with per-distgit directories, following the same schema used by the
RPM Packaging for OpenStack [https://github.com/openstack/rpm-packaging]
project. This driver requires setting some optional configuration options
in the [gitrepo_driver] section.

	dlrn.drivers.local.LocalDriver, which uses a current directory to
discover a specfile. The current directory must be a git repository. The
specfile is used as it is to build the rpm(s). This driver does not require
specific configuration options.

	build_driver defines the driver used to build the packages. Source RPMs
are always created using Mock, but the actual RPM build process can use the
following drivers:

	dlrn.drivers.mockdriver.MockBuildDriver, which uses Mock to build the
package. There are some optional configuration options in the
[mockbuild_driver] section.

	dlrn.drivers.kojidriver.KojiBuildDriver, which uses koji [https://fedoraproject.org/wiki/Koji]
to build the package. There are some mandatory configuration options in the
[kojibuild_driver] section. To use this driver, you need to make sure
the koji command (or any alternative if you use a different binary)
is installed on the system.

	dlrn.drivers.coprdriver.CoprBuildDriver, which uses copr [https://fedoraproject.org/wiki/Category:Copr]
to build the package. The mandatory configuration coprid option in the
[coprbuild_driver] section must be set to use this driver. You need to
make sure the copr-cli command is installed on the system. Configure
only one target architecture per COPR builder else it would confuse DLRN.

	release_numbering defines the algorithm used by DLRN to assign release
numbers to packages. The release number is created from the current date and
the source repository git hash, and can use two algorithms:

	0.date.hash if the old method is used: 0.<date>.<hash>

	0.1.date.hash if the new method is used: 0.1.<date>.<hash>. This new
method provides better compatibility with the Fedora packaging guidelines.

	minor.date.hash allows you to specify the minor version to be used, which
can be different from 0. If this release numbering schema is used, the value
of minor will be determined by release_minor.

	release_minor only takes place when release_numbering is set to
minor.date.hash. For example, if this value is set to 3, the release number
for all packages will be computed as 3.date.hash.

	custom_preprocess, if set, defines a comma-separated list of custom programs
or scripts to be called as part of the pre-process step. The custom programs will
be executed sequentially.

After the distgit is cloned, and before the source RPM is built, the pkginfo
drivers run a pre-process step where some actions are taken on the repository,
such as Jinja2 template processing. In addition to this per-driver step, a
custom pre-process step can be specified.
The external program(s) will be executed with certain environment variables set:

	DLRN_PACKAGE_NAME: name of the package being built.

	DLRN_DISTGIT: path to the distgit in the local file system.

	DLRN_SOURCEDIR: path to the source git in the local file system.

	DLRN_SOURCE_COMMIT: commit hash of the source repository being built.

	DLRN_USER: name of the user running DLRN.

	DLRN_UPSTREAM_DISTGIT: for the downstream driver, path to the
upstream distgit in the local file system.

	DLRN_DISTROINFO_REPO: for the rdoinfo and downstream drivers,
path to the local or remote distroinfo repository used by the instance.

Do not assume any other environment variable (such as PATH), since it may not
be defined.

	include_srpm_in_repo, if set to true (default), includes source RPMs in the
repositories generated by DLRN. If set to false, DLRN will exclude source RPMs
from the repositories.

	keep_changelog, if set to true, will not clean the %changelog section from
spec files when building the source RPM. When set to the default value of
false, DLRN will remove all changelog content from specs.

	use_components, if set to true, will enable component support for DLRN. This
is currently provided by the dlrn.drivers.rdoinfo.RdoInfoDriver driver only.
Please refer to the internals page for details on component
support.

	deps_url allows the user to specify a custom URL for the dependency
repositories file. By default, if not set, DLRN will fetch a file from the URL
formed by baseurl + delorean-deps.repo. Note it is possible to specify
a URL in the traditional http://example.com/path/to/file.repo as well as
a local file using file:///path/to/file.repo.

The optional [gitrepo_driver] section has the following configuration
options:

[gitrepo_driver]
repo=http://github.com/openstack/rpm-packaging
directory=/openstack
skip=openstack-macros,keystoneauth1
use_version_from_spec=0
keep_tarball=0

	repo is the single Git repository where all distgits are located.

	directory is a directory or comma-separated list of the directories
inside the repo. DLRN will expect each directory inside it to include the
spec file for a single project, using a Jinja2 template like in the RPM
Packaging for OpenStack project.

	skip is a comma-separated list of directories to skip from directory
when creating the list of packages to build. This can be of use when the
Git repo contains one or more directories without a spec file in it, or
the package should not be built for any other reason.

	use_version_from_spec If set to 1 (or true), the driver will parse the
template spec file and set the source branch to the Version: tag in the spec.

	keep_tarball If set to 1 (or true), and the spec template detects the
package version automatically using a tarball (see [1]), DLRN will not
replace the Source0 file with a tarball generated from the Git repo, but it
will use the same tarball used to detect the package version. This defeats
the purpose of following the commits from Git, but it is useful in certain
scenarios, such as CI testing, when the tarball or its tags may not be in
sync with the Git contents.

The optional [rdoinfo_driver] section has the following configuration
options:

[rdoinfo_driver]
repo=http://github.com/org/rdoinfo-fork
info_files=file.yml
cache_dir=~/.distroinfo/cache

	repo defines the rdoinfo repository to use. This setting
must be set if a fork of the rdoinfo repository must be used.

	info_files selects an info file (or a list of info files) to get package
information from (within the distroinfo repo selected with repo). It
defaults to rdo.yml.

	cache_dir defines the directory uses for caching to avoid downloading
the same repo multiple times. By default, it uses None.
A different base directory for the cache can be set for both [rdoinfo_driver]
and [downstream_driver]

The optional [downstream_driver] section has the following configuration
options:

[downstream_driver]
repo=http://github.com/org/fooinfo
info_files=foo.yml
versions_url=https://trunk.rdoproject.org/centos7-master/current/versions.csv
downstream_distro_branch=foo-rocky
downstream_tag=foo-
downstream_distgit_tag=foo-distgit
use_upstream_spec=False
downstream_spec_replace_list=^foo/bar,string1/string2
cache_dir=~/.distroinfo/cache
downstream_source_git_key=bar-distgit
downstream_source_git_branch=ds-master

	repo selects a distroinfo repository to get package information from.

	info_files selects an info file (or a list of info files) to get package
information from (within the distroinfo repo selected with repo)

	versions_url must point to a versions.csv file generated by
DLRN instance. Parameter versions_url can be a comma separated list of
versions.csv URLs. In this case, the content of latest csv files
overrides previous ones (last wins). This allows to override versions for
packages in specific component by using component-specific versions.csv files
provided by a different DLRN instance. distro_hash and commit_hash
will be reused from supplied versions.csv URL(s) and only packages
present in the file(s) are processed.

	downstream_distro_branch defines which branch to use when cloning the
downstream distgit, since it may be different from the upstream distgit branch.

	downstream_tag if set, it will filter the packages section of packaging
metadata (from repo/info_files) to only contain packages with
the downstream_tag tag. This tag will be filtered in addition to the one
set in the DEFAULT/tags section.

	downstream_distgit_key is the key used to find the downstream distgit in
the packages section of packaging metadata (from repo/info_files).

	use_upstream_spec defines if the upstream distgit contents (spec file and
additional files) should be copied over the downstream distgit after cloning.

	downstream_spec_replace_list, when use_upstream_spec is set to True,
will perform some sed-like edits in the spec file after copying it from the
upstream to the downstream distgit. This is specially useful when the
downstream DLRN instance has special requirements, such as building without
documentation. in that case, a regular expresion like the following could be
used:

	downstream_source_git_key is the key used to find the downstream source
git in the packages section of the packaging metadata (from repo/info_files).

	downstream_source_git_branch defines which branch to use when cloning
the downstream source git.

 downstream_spec_replace_list=^%global with_doc.+/%global with_doc 0

Multiple regular expressions can be used, separated by commas.

	cache_dir defines the directory uses for caching to avoid downloading
the same repo multiple times. By default, it uses None.
A different base directory for the cache can be set for both [rdoinfo_driver]
and [downstream_driver]

The optional [mockbuild_driver] section has the following configuration
options:

[mockbuild_driver]
install_after_build=1

	The install_after_build boolean option defines whether mock should
try to install the newly created package in the same buildroot or not.
If not specified, the default is True.

The optional [kojibuild_driver] section is only taken into account if the
build_driver option is set to dlrn.drivers.kojidriver.KojiBuildDriver. The
following configuration options are included:

[kojibuild_driver]
koji_exe=koji
krb_principal=user@EXAMPLE.COM
krb_keytab=/home/user/user.keytab
scratch_build=True
build_target=koji-target-build
arch=aarch64
use_rhpkg=False
fetch_mock_config=False
mock_base_packages=basesystem rpm-build
mock_package_manager=yum
additional_koji_tags=tag1,tag2

	koji_exe defines the executable to use. Some Koji instances create their
own client packages to add their default configuration, such as
CBS [https://wiki.centos.org/HowTos/CommunityBuildSystem] or Brew.
If not specified, it will default to koji.

	krb_principal defines the Kerberos principal to use for the Koji builds.
If not specified, DLRN will assume that authentication is performed using SSL
certificates.

	krb_keytab is the full path to a Kerberos keytab file, which contains the
Kerberos credentials for the principal defined in the krb_principal
option.

	scratch_build defines if a scratch build should be used. By default, it
is set to True.

	build_target defines the build target to use. This defines the buildroot
and base repositories to be used for the build.

	arch allows to override default architecture (x86_64) in some cases (e.g
retrieving mock configuration from Koji instance).

	use_rhpkg allows us to use rhpkg as the build tool in combination with
koji_exe. That involves some changes in the workflow:

	Instead of using koji_exe to trigger the build, DLRN will generate the
source RPM, and upload it to the distgit path using rhpkg import.

	DLRN will run rhpkg build to actually trigger the build.

Note that rhpkg requires a valid Kerberos ticket, so the krb_principal
and krb_keytab options must be set.

Also note that setting rhpkg only makes sense when using dlrn.drivers.downstream.DownstreamInfoDriver
as the pkginfo driver.

	koji_rhpkg_timeout, indicates the timeout for rhpkg commands. Default 3600.

	fetch_mock_config, if set to true, will instruct DLRN to download the
mock configuration for the build target from Koji, and use it when building
the source RPM. If set to false, DLRN will use its internally defined mock
configuration, based on the DEFAULT/target configuration option.

	mock_base_packages, if fetch_mock_config is set to true, will
define the set of base packages that will be installed in the mock configuration
when creating the source RPM. This list of packages will override the one
fetched in the mock configuration, if set. If not set, no overriding will
be done.

	mock_package_manager, if fetch_mock_config is set to true, will
override the config_ops['package_manager'] option from the fetched mock
configuration. This allows us to have different package managers if we are
building for different operating system releases, such as CentOS 7 (yum) and
CentOS 8 (dnf).

	additional_koji_tags, if set, will assign the build the additional tags
defined in the list.

The optional [coprbuild_driver] section has the following configuration
options:

[coprbuild_driver]
coprid=account/repo

	The coprid option defines Copr id to use to compile the packages.

Configuring for gerrit

You first need git-review installed. You can use a package or install
it using pip.

Then the username for the user creating the gerrit reviews when a
build will fail needs to be configured like this:

$ git config –global gitreview.username dlrnbot
$ git config –global user.email dlrn@dlrn.domain

and authorized to connect to Gerrit without password. Make sure
the public SSH key of the user that run DLRN is defined in
the Gerrit account linked to the DLRN user email.

Configuring your httpd

The output generated by DLRN is a file structure suitable for serving with a web-server.
You can either add a section in the server configuration where you map a URL to the
data directories, or just make a symbolic link:

$ cd /var/www/html
$ sudo ln -s <datadir>/repos .

Database support

DLRN supports different database engines through SQLAlchemy. SQLite3 and MariaDB have
been tested so far. You can set the database_connection parameter in projects.ini
with the required string, using the SQLAlchemy syntax [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls].

For MariaDB, use a mysql+pymysql driver, with the following string:

database_connection=mysql+pymysql://user:password@serverIP/dlrn

That requires you to pre-create the dlrn database.

If your MariaDB database is placed on a publicly accessible server, you will want to
secure it as a first step:

$ sudo mysql_secure_installation

You can use the following commands to create the database and grant the required permissions:

use mysql
create database dlrn;
grant all on dlrn.* to 'user'@'%' identified by 'password';
flush privileges;

You may also want to enable TLS support in your connections. In this case, follow the
steps detailed in the MariaDB documentation [https://mariadb.com/kb/en/mariadb/secure-connections-overview/] to enable TLS
support on your server. Generate the client key and certificates, and then set up
your database connection string as follows:

database_connection=mysql+pymysql://user:password@serverIP/dlrn?ssl_cert=/dir/client-cert.pem&ssl_key=/dir/client-key.pem

You can also force the MySQL user to connect using TLS if you create it as follows:

use mysql
create database dlrn;
grant all on dlrn.* to 'user'@'%' identified by 'password' REQUIRE SSL;
flush privileges;

Database migration

During DLRN upgrades, you may need to upgrade the database schemas,
in order to keep your old history.
To migrate database to the latest revision, you need the alembic command-line
and to run the alembic upgrade head command.

$ sudo yum install -y python-alembic
$ alembic upgrade head

If the database doesn’t exist, alembic upgrade head will create it from scratch.

If you are using a MariaDB database, the initial schema will not be valid. You should
start by running DLRN a first time, so it creates the basic schema, then run the
following command to stamp the database to the first version of the schema that
supported MariaDB:

$ alembic stamp head

After that initial command, you will be able to run future migrations.

Adding a custom mock base configuration

The source RPM build operations, and the binary RPM build by default, are performed
using mock. Mock uses a configuration file, and DLRN provides sample files for
CentOS and Fedora in the scripts/ directory.

You may want to use a different base mock configuration, if you need to specify a
different base package set or an alternative yum repository. The procedure to do so
is the following:

	Edit the configdir variable in your projects.ini file, and make it point to
a configuration directory.

	In that new directory, create the configuration file. It should be named
<target>.cfg, where <target> is the value of the target option in
projects.ini.

	For the mock configuration file syntax, refer to the mock documentation [https://github.com/rpm-software-management/mock/wiki#generate-custom-config-file].

References

[1]
Version handling using renderspec templates
https://github.com/openstack/renderspec/blob/master/doc/source/usage.rst#handling-the-package-version

Repositories

DLRN doesn’t stop at building packages, it also generates yum repositories
you can install the packages from.

DLRN repositories are all hosted on http://trunk.rdoproject.org.

This documentation goes through the various repositories and what they are
used for.

Building new packages and repositories

DLRN watches upstream git repositories for new commits. When there is one,
DLRN builds a new version of the project’s package with the new commit.

On a successful build, DLRN will generate a new repository with the latest
version of every package that successfully built.

A package build can fail due to different reasons, for example when a new
dependency was introduced that needs to be added to the RPM spec file.
If there is a build failure, no repository is generated and the project’s
package is not updated.

The package will not be updated for as long as it fails to build.
This means that newer repositories generated from other projects’ commits would
not contain all the latest commits of the project that failed to build.

DLRN does not delete any generated repositories. This means we can use any
previously built repositories if necessary.

Generated repositories are unique and each have their own hash.
For example, you might be using the DLRN /centos7/current/delorean.repo
repository but in fact this corresponds to
/centos7/42/0c/420c638d6325d1ccf50eb5fe430c5d255dcbfb94_52cbbfe7.

DLRN manages these references as simple symbolic links for the current
and consistent repositories. The current-passed-ci repository is a
symbolic link managed automatically by RDO’s continuous integration pipeline
and is not managed or known by DLRN itself.

DLRN repository: delorean-deps

OpenStack projects are typically built into the DLRN repositories.
These projects require dependencies that DLRN does not build, for example
python-requests, python-prettytable and so on.

The RDO project provides a mirror which contains all of these dependencies and
the repository configuration is available at /delorean-deps.repo for each
release.

For example:

	Trunk: http://trunk.rdoproject.org/centos7/delorean-deps.repo

	Liberty: http://trunk.rdoproject.org/centos7-liberty/delorean-deps.repo

DLRN repository: current

On a successful build, DLRN will generate a new repository with the latest
version of every package that successfully built.

This new repository will be tagged as current. A current repo contains
the last successfully built package from every project.

A DLRN current repository might not contain all the latest upstream commits,
if any of them failed to build the package. For example, if we had 100
packages, 99 of them have been successfully built but openstack-nova
failed, the current repository would contain the latest commits from 99
projects, and the last commit that could be built for openstack-nova, which
is at least 1 commit behind the current master.

if there are any ongoing build failures that are unresolved.

This repository is available at /current/delorean.repo for each release.

For example:

	Trunk: http://trunk.rdoproject.org/centos7/current/delorean.repo

	Liberty: http://trunk.rdoproject.org/centos7-liberty/current/delorean.repo

DLRN repository: consistent

DLRN consistent repositories are generated for any given set of
packages that have no current build failures.

These repositories have the latest and greatest of every package and all
upstream commits have been successfully built up until that point. In the
above example, if 99 packages are successfully built but openstack-nova
fails to build, the consistent repository will not be updated until it is
fixed.

The continuous integration done to test RDO packages target the DLRN
consistent repositories.

This repository is available at /consistent/delorean.repo for each release.

For example:

	Trunk: http://trunk.rdoproject.org/centos7/consistent/delorean.repo

	Liberty: http://trunk.rdoproject.org/centos7-liberty/consistent/delorean.repo

DLRN repository: current-passed-ci

The RDO project has a continuous integration pipeline that consists of multiple
jobs that deploy and test OpenStack as accomplished by different installers.

This vast test coverage attempts to ensure that there are no known issues
either in packaging, in code or in the installers themselves.

Once a DLRN consistent repository has undergone these tests successfully,
it will be promoted to current-passed-ci.

current-passed-ci represents the latest and greatest version of RDO trunk
packages that were tested together successfully.

We encourage installer projects and users of RDO to use this repository to
keep up with trunk while maintaining a certain level of stability provided by
RDO’s CI.

This repository is available at /current-passed-ci/delorean.repo for each
release.

For example:

	Trunk: http://trunk.rdoproject.org/centos7/current-passed-ci/delorean.repo

	Liberty:
http://trunk.rdoproject.org/centos7-liberty/current-passed-ci/delorean.repo

Usage

Parameters

usage: dlrn [-h] [--config-file CONFIG_FILE]
 [--config-override CONFIG_OVERRIDE] [--info-repo INFO_REPO]
 [--build-env BUILD_ENV] [--local] [--head-only]
 [--project-name PROJECT_NAME | --package-name PACKAGE_NAME]
 [--dev] [--log-commands] [--use-public] [--order] [--sequential]
 [--status] [--recheck] [--force-recheck] [--version] [--run RUN]
 [--stop] [--verbose-build] [--no-repo] [--debug]

optional arguments:
 -h, --help show this help message and exit
 --config-file CONFIG_FILE
 Config file. Default: projects.ini
 --config-override CONFIG_OVERRIDE
 Override a configuration option from the config file.
 Specify it as: section.option=value. Can be used
 multiple times if more than one override is needed.
 --info-repo INFO_REPO
 use a local rdoinfo repo instead of fetching the
 default one using rdopkg. Only applies when
 pkginfo_driver is rdoinfo in projects.ini
 --build-env BUILD_ENV
 Variables for the build environment.
 --local Use local git repos if possible. Only commited changes
 in the local repo will be used in the build.
 --head-only Build from the most recent Git commit only.
 --project-name PROJECT_NAME
 Build a specific project name only. Use multiple times
 to build more than one project in a run.
 --package-name PACKAGE_NAME
 Build a specific package name only. Use multiple times
 to build more than one package in a run.
 --dev Don't reset packaging git repo, force build and add
 public master repo for dependencies (dev mode).
 --log-commands Log the commands run by dlrn.
 --use-public Use the public master repo for dependencies when doing
 install verification.
 --order Compute the build order according to the spec files
 instead of the dates of the commits. Implies
 --sequential.
 --sequential Run all actions sequentially, regardless of the number
 of workers specified in projects.ini.
 --status Get the status of packages.
 --recheck Force a rebuild for a particular package. Implies
 --package-name
 --force-recheck Force a rebuild for a particular package, even if its
 last build was successful. Requires setting
 allow_force_rechecks=True in projects.ini. Implies
 --package-name and --recheck
 --version show program's version number and exit
 --run RUN Run a program instead of trying to build. Implies
 --head-only
 --stop Stop on error.
 --verbose-build Show verbose output during the package build.
 --no-repo Do not generate a repo with all the built packages.
 --debug Print debug logs

Quickstart single package build

Run DLRN for the package you are trying to build.

$ dlrn --use-public --package-name openstack-cinder

By using the parameter --use-public DLRN will configure the build
environment to use the public master repository.

In case of failure you might need to re-run a build by discarding the
DLRN database content. To do so you need to run:

$ dlrn --recheck --package-name openstack-cinder
$ dlrn --use-public --package-name openstack-cinder

It is also possible to force the recheck of a successfully built commit.
Please note that this is not advisable if you rely on the DLRN-generated
repositories, since it will remove packages that other hashed repositories
may have symlinked.

If you are sure you need it, set allow_force_rechecks=true in your
projects.ini file, then run:

$ dlrn --recheck --force-recheck --package-name openstack-cinder
$ dlrn --use-public --package-name openstack-cinder

Full build

Some of the projects require others to build. As a result, use the
special option --order to build in the order computed from the
BuildRequires and Requires fields of the spec files. If this option is
not specified, DLRN builds the packages in the order of the
timestamps of the commits.

$ dlrn --order

Advanced single package build

Run DLRN for the package you are trying to build.

$ dlrn --local --package-name openstack-cinder

This will clone the packaging for the project you’re interested in into data/openstack-cinder_repo,
you can now change this packaging and rerun the DLRN command in test your changes.

This command expects build and runtime dependencies to be found in previously
built repositories (during the initial full build).

If you have locally changed the packaging make sure to include --dev in the command line.
This switches DLRN into dev mode which causes it to preserve local changes to your
packaging between runs so you can iterate on spec changes. It will also cause the most current
public master repository to be installed in your build image(as some of its contents will be
needed for dependencies) so that the packager doesn’t have to build the entire set of packages.

Output and log files

The output of DLRN is generated in the <datadir>/repos directory. It consists
of the finished .rpm files for download, located in /repos/current, and reports
of the failures in /repos/status_report.html, and a report of all builds in
/repos/report.html.

Importing commits built by another DLRN instance

DLRN has the ability to import a commit built by another instance. This allows a master-worker
architecture, where a central instance aggregates builds made by multiple, possibly short-lived
instances.

The builder instance will be invoked as usual, and it will output a commit.yaml file in the
generated repo. In general, we will want to use the --use-public command-line option to make
sure all repos are available. Note it is very important to not use the --dev command-line
option, as some of the commit metadata will be lost, specifically all data related to the distgit
repository.

On the central instance side, the dlrn-remote has the following syntax:

usage: dlrn-remote [-h] [--config-file CONFIG_FILE] --repo-url REPO_URL [--info-repo INFO_REPO]

arguments:
 -h, --help show this help message and exit
 --config-file CONFIG_FILE
 Config file. Default: projects.ini
 --repo-url REPO_URL Base repository URL for remotely generated repo
 (required)
 --info-repo INFO_REPO
 use a local rdoinfo repo instead of fetching the
 default one using rdopkg. Only applies when
 pkginfo_driver is rdoinfo in projects.ini

An example command-line would be:

$ dlrn-remote --config-file projects.ini \
 --repo-url http://<builder IP>/repos/<hash>/

Where http://192.168.122.164/repos/<hash> is the URL where the builder instance exports
its built repo. The commit.yaml file must be on the same hashed repo, as created by DLRN.

Purging old commits

Over time, the disk space consumed by DLRN will grow, as older commits and their repositories
are never removed. It is possible to use the dlrn-purge command to purge commits built before
a certain date.

usage: dlrn-purge [-h] --config-file CONFIG_FILE --older-than OLDER_THAN [-y] [--dry-run]
arguments:
 -h, --help show this help message and exit
 --config-file CONFIG_FILE
 Config file (required)
 --older-than OLDER_THAN
 how old a build needs to be, in order to be considered
 for removal (required). It is measured in days.
 -y Assume yes for all questions.
 --dry-run If specified, do not apply any changes. Instead, show what would
 be removed from the filesystem.

Old commits will remain in the database, although their flag will be set to purged, and their
associated repo directory will be removed. There is one exception to this rule, when an old
commit is the newest one that was successfully built. In that case, it will be preserved.

Building only the last commit

You can use the --head-only option to build only the last commit of
the branch for all the projects or a particular project
using --project-name or --package-name.

Doing so you skip commits and if you find a problem in the last
commit, you can use the ./scripts/bisect.sh helper to drive a git
bisect session to find which commit has caused the problem:

Usage: ./scripts/bisect.sh <dlrn config file> <project name> <good sha1> <bad sha1> [<dlrn extra args>]

Troubleshooting

If you interrupt dlrn during mock build you might get an error

OSError: [Errno 16] Device or resource busy: '/var/lib/mock/dlrn-centos-x86_64/root/var/cache/yum'

Solution is to clear left-over bind mount as root:

umount /var/lib/mock/dlrn-centos-x86_64/root/var/cache/yum

Other requirements

If the git clone operation fails for a package, DLRN will try to remove the
source directory using sudo. Please make sure the user running DLRN can run
rm -rf /path/to/dlrn/data/* without being asked for a password, otherwise
DLRN will fail to process new commits.

API issues

If you want to quickly check the API status, you can use the /api/health
endpoint. It will allow you to test API connectivity, database access and
authentication:

curl http://localhost:5000/api/health
curl -d test=test --user user:password http://localhost:5000/api/health

API definition

General information

GET operations will be non-authenticated. POST operations will require
authentication using username+password.

Password information is stored in the database using the SHA512 hash.

For POST operations, all data will be sent/received using JSON objects, unless
stated otherwise. For GET operations, the recommended method is to send data
using in-query parameters. JSON in-body objects still work, but are deprecated
and expected to be removed in a future version.

API calls

GET /api/health

Check the API server health. This will trigger a database connection to
ensure all components are in working condition.

Normal response codes: 200

Error response codes: 401

Response:

	Parameter

	Type

	Description

	result

	string

	A simple success string

POST /api/health

Check the API server health. This will trigger a database connection to
ensure all components are in working condition. In addition to this, the
POST call will check authentication.

Normal response codes: 200

Error response codes: 401

Response:

	Parameter

	Type

	Description

	result

	string

	A simple success string

GET /api/last_tested_repo

Get the last tested repo since a specific time.

If a job_id is specified, the order of precedence for the repo returned is:

	The last tested repo within that timeframe for that CI job.

	The last tested repo within that timeframe for any CI job, so we can have
several CIs converge on a single repo.

	The last “consistent” repo, if no repo has been tested in the timeframe.

If sequential_mode is set to true, a different algorithm is used. Another
parameter previous_job_id needs to be specified, and the order of
precedence for the repo returned is:

	The last tested repo within that timeframe for the CI job described by
previous_job_id.

	If no repo for previous_job_id is found, an error will be returned

The sequential mode is meant to be used by CI pipelines, where a CI (n) job needs
to use the same repo tested by CI (n-1).

Normal response codes: 200

Error response codes: 400

Request:

	Parameter

	Type

	Description

	max_age

	integer

	Maximum age (in hours) for the repo to be considered. Any repo
tested or being tested after “now - max_age” will be taken
into account. If set to 0, all repos will be considered.

	success

	boolean
(optional)

	If set to a value, find repos with a successful/unsuccessful
vote (as specified). If not set, any tested repo will be
considered.

	job_id

	string
(optional)

	Name of the CI that sent the vote. If not set, no filter will
be set on CI.

	sequential_mode

	boolean
(optional)

	Use the sequential mode algorithm. In this case, return the
last tested repo within that timeframe for the CI job
described by previous_job_id. Defaults to false.

	previous_job_id

	string
(optional)

	If sequential_mode is set to true, look for jobs tested by
the CI identified by previous_job_id.

	component

	string
(optional)

	Only report votes associated to this component

Response:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of tested repo

	distro_hash

	string

	distro_hash of tested repo

	extended_hash

	string

	extended_hash of tested repo

	success

	boolean

	whether the test was successful or not

	job_id

	string

	name of the CI sending the vote

	in_progress

	boolean

	is this CI job still in-progress?

	timestamp

	integer

	timestamp for the repo

	user

	string

	user who created the CI vote

	component

	string

	Component associated to the commit/distro hash

GET /api/repo_status

Get all the CI reports for a specific repository.

Normal response codes: 200

Error response codes: 400

Request:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of the repo to fetch information for

	distro_hash

	string

	distro_hash of the repo to fetch information for

	extended_hash

	string
(optional)

	If set, extended_hash of the repo to fetch information for.
If not set, the latest commit with the commit/distro hash
combination will be reported.

	success

	boolean
(optional)

	If set to a value, only return the CI reports with the
specified vote. If not set, return all CI reports.

Response:

The JSON output will contain an array where each item contains:

	Parameter

	Type

	Description

	job_id

	string

	name of the CI sending the vote

	commit_hash

	string

	commit_hash of tested repo

	distro_hash

	string

	distro_hash of tested repo

	extended_hash

	string

	extended_hash of tested repo

	url

	string

	URL where to find additional information from the CI execution

	timestamp

	integer

	Timestamp (in seconds since the epoch)

	in_progress

	boolean

	False -> is this CI job still in-progress?

	success

	boolean

	Was the CI execution successful?

	notes

	Text

	Additional notes

	user

	string

	user who created the CI vote

	component

	string

	Component associated to the commit/distro hash

GET /api/agg_status

Get all the CI reports for a specific aggregated repository.

Normal response codes: 200

Error response codes: 400

Request:

	Parameter

	Type

	Description

	aggregate_hash

	string

	hash of the aggregated repo to fetch information for

	success

	boolean
(optional)

	If set to a value, only return the CI reports with the
specified vote. If not set, return all CI reports.

Response:

The JSON output will contain an array where each item contains:

	Parameter

	Type

	Description

	job_id

	string

	name of the CI sending the vote

	aggregate_hash

	string

	hash of tested aggregated repo

	url

	string

	URL where to find additional information from the CI execution

	timestamp

	integer

	Timestamp (in seconds since the epoch)

	in_progress

	boolean

	False -> is this CI job still in-progress?

	success

	boolean

	Was the CI execution successful?

	notes

	Text

	Additional notes

	user

	string

	user who created the CI vote

GET /api/promotions

Get all the promotions, optionally for a specific repository or promotion name. The output
will be sorted by the promotion timestamp, with the newest first, and limited to 100 results
per query.

Normal response codes: 200

Error response codes: 400

Request:

	Parameter

	Type

	Description

	commit_hash

	string
(optional)

	If set, commit_hash of the repo to use as filter key.
Requires distro_hash.

	distro_hash

	string
(optional)

	If set, commit_hash of the repo to use as filter key.
Requires commit_hash.

	extended_hash

	string
(optional)

	If set, extended_hash of the repo to use as filter key.
Requires commit_hash and distro_hash.

	aggregate_hash

	string
(optional)

	If set, use the generated aggregate_hash as filter key.
Only makes sense when components are enabled.

	promote_name

	string
(optional)

	If set to a value, filter results by the specified promotion
name.

	offset

	integer
(optional)

	If set to a value, skip the initial <offset> promotions.

	limit

	integer
(optional)

	If set to a value, limit the returned promotions amount
to <limit>.

	component

	string
(optional)

	If set to a value, only report promotions for this component.

The JSON output will contain an array where each item contains:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of the promoted repo

	distro_hash

	string

	distro_hash of the promoted repo

	extended_hash

	string

	extended_hash of the promoted repo

	agggregate_hash

	string

	Hash of the aggregated repo file, when using components

	repo_hash

	string

	Repository hash, composed of the commit_hash and short
distro_hash

	repo_url

	string

	Full URL of the promoted repository

	promote_name

	string

	name used for the promotion

	component

	string

	Component associated to the commit/distro hash

	timestamp

	integer

	Timestamp (in seconds since the epoch)

	user

	string

	user who created the promotion

The array will be sorted by the promotion timestamp, with the newest first.

GET /api/metrics/builds

Retrieve statistics on the number of builds during a certain period, optionally filtered by
package name.

Normal response codes: 200

Error response codes: 400

	Parameter

	Type

	Description

	start_date

	string

	Start date for the period, in YYYY-mm-dd format. The start
date is included in the reference period.

	end_date

	string

	End date for the period, in YYYY-mm-dd format. The end date is
not included in the period, so it is
start_date <= date < end_date.

	package_name

	string
(optional)

	If set to a value, report metrics only for the specified
package name.

Response:

	Parameter

	Type

	Description

	succeeded

	integer

	Number of commits that were built successfully in the period

	failed

	integer

	Number of commits that failed to build in the period

	total

	integer

	Total number of commits processed in the period

GET /metrics

Retrieve statistics on the absolute number of builds for the builder, in Prometheus format.

Normal response codes: 200

Error response codes: 400

No parameters.

Response:

In text/plain format:

HELP dlrn_builds_succeeded_total Total number of successful builds
TYPE dlrn_builds_succeeded_total counter
dlrn_builds_succeeded_total{baseurl="http://trunk.rdoproject.org/centos8/"} 9296.0
HELP dlrn_builds_failed_total Total number of failed builds
TYPE dlrn_builds_failed_total counter
dlrn_builds_failed_total{baseurl="http://trunk.rdoproject.org/centos8/"} 244.0
HELP dlrn_builds_retry_total Total number of builds in retry state
TYPE dlrn_builds_retry_total counter
dlrn_builds_retry_total{baseurl="http://trunk.rdoproject.org/centos8/"} 119.0
HELP dlrn_builds_total Total number of builds
TYPE dlrn_builds_total counter
dlrn_builds_total{baseurl="http://trunk.rdoproject.org/centos8/"} 9659.0

GET /api/graphql

Query the GraphQL interface [https://graphql.org/]. The available GraphQL schema is described
in detail in its own documentation.

POST /api/last_tested_repo

Get the last tested repo since a specific time (optionally for a CI job),
and add an “in progress” entry in the CI job table for this.

If a job_id is specified, the order of precedence for the repo returned is:

	The last tested repo within that timeframe for that CI job.

	The last tested repo within that timeframe for any CI job, so we can have
several CIs converge on a single repo.

	The last “consistent” repo, if no repo has been tested in the timeframe.

If sequential_mode is set to true, a different algorithm is used. Another
parameter previous_job_id needs to be specified, and the order of
precedence for the repo returned is:

	The last tested repo within that timeframe for the CI job described by
previous_job_id.

	If no repo for previous_job_id is found, an error will be returned

The sequential mode is meant to be used by CI pipelines, where a CI (n) job needs
to use the same repo tested by CI (n-1).

Normal response codes: 201

Error response codes: 400, 415

Request:

	Parameter

	Type

	Description

	max_age

	integer

	Maximum age (in hours) for the repo to be considered. Any repo
tested or being tested after “now - max_age” will be taken
into account. If set to 0, all repos will be considered.

	reporting_job_id

	string

	Name of the CI that will add the “in progress” entry in the CI
job table

	success

	boolean
(optional)

	If set to a value, find repos with a successful/unsuccessful
vote (as specified). If not set, any tested repo will be
considered.

	job_id

	string
(optional)

	name of the CI that sent the vote. If not set, no filter will
be set on CI.

	sequential_mode

	boolean
(optional)

	Use the sequential mode algorithm. In this case, return the
last tested repo within that timeframe for the CI job
described by previous_job_id. Defaults to false.

	previous_job_id

	string
(optional)

	If sequential_mode is set to true, look for jobs tested by
the CI identified by previous_job_id.

	component

	string
(optional)

	Only report votes associated to this component

Response:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of tested repo

	distro_hash

	string

	distro_hash of tested repo

	extended_hash

	string

	extended_hash of tested repo

	success

	boolean

	whether the test was successful or not

	job_id

	string

	name of the CI sending the vote

	in_progress

	boolean

	True -> is this CI job still in-progress?

	timestamp

	integer

	Timestamp for this CI Vote (taken from the DLRN system time)

	user

	string

	user who created the CI vote

	component

	string

	Component associated to the commit/distro hash

POST /api/report_result

Report the result of a CI job.

It is possible to report results on two sets of objets:

	A commit, represented by a commit_hash and a distro_hash.

	An aggregated repo, represented by an aggregate_hash.

One of those two parameters needs to be specified, otherwise the call will
return an error.

Normal response codes: 201

Error response codes: 400, 415, 500

Request:

	Parameter

	Type

	Description

	job_id

	string

	name of the CI sending the vote

	commit_hash

	string

	commit_hash of tested repo

	distro_hash

	string

	distro_hash of tested repo

	extended_hash

	string
(optional)

	extended_hash of the tested repo. If not set, the latest
commit with the commit_hash/distro_hash combination will be
used

	aggregate_hash

	string

	hash of the aggregated repo that was tested

	url

	string

	URL where to find additional information from the CI execution

	timestamp

	integer

	Timestamp (in seconds since the epoch)

	success

	boolean

	Was the CI execution successful?

	notes

	Text

	Additional notes (optional)

Response:

	Parameter

	Type

	Description

	job_id

	string

	name of the CI sending the vote

	commit_hash

	string

	commit_hash of tested repo

	distro_hash

	string

	distro_hash of tested repo

	extended_hash

	string

	extended_hash of tested repo

	url

	string

	URL where to find additional information from the CI execution

	timestamp

	integer

	Timestamp (in seconds since the epoch)

	in_progress

	boolean

	False -> is this CI job still in-progress?

	success

	boolean

	Was the CI execution successful?

	notes

	Text

	Additional notes

	user

	string

	user who created the CI vote

	component

	string

	Component associated to the commit/distro hash

POST /api/promote

Promote a repository. This can be implemented as a local symlink creation in the DLRN
worker, or any other form in the future.

Note the API will refuse to promote using promote_name=”consistent” or “current”, since
those are reserved keywords for DLRN. Also, a commit that has been purged from the
database cannot be promoted.

When the projects.ini use_components option is set to true, an aggregated repo
file will be created, including the repo files of all components that were promoted with
the same promotion name. The hash of that file will be returned as aggregated_hash.
If the option is set to false, a null value will be returned.

Normal response codes: 201

Error response codes: 400, 403, 410, 415, 500

Request:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of the repo to be promoted

	distro_hash

	string

	distro_hash of the repo to be promoted

	extended_hash

	string

	extended_hash of the repo to be promoted (optional). If not
specified, the API will take the last commit built with the
commit and distro hash.

	promote_name

	string

	name to be used for the promotion. In the current
implementation, this is the name of the symlink to be created

Response:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of the promoted repo

	distro_hash

	string

	distro_hash of the promoted repo

	extended_hash

	string

	extended_hash of the promoted repo

	repo_hash

	string

	Repository hash, composed of the commit_hash and short
distro_hash

	repo_url

	string

	Full URL of the promoted repository

	promote_name

	string

	name used for the promotion

	component

	string

	Component associated to the commit/distro hash

	timestamp

	integer

	Timestamp (in seconds since the epoch)

	user

	string

	user who created the promotion

	agggregate_hash

	string

	Hash of the aggregated repo file, when using components

POST /api/promote-batch

Promote a list of commits. This is the equivalent of calling /api/promote multiple times,
one with each commit/distro_hash combination. The only difference is that the call is
atomic, and when components are enabled, the aggregated repo files are only updated once.

If any of the individual promotions fail, the API call will try its best to undo all the
changes to the file system (e.g. symlinks).

Note the API will refuse to promote using promote_name=”consistent” or “current”, since
those are reserved keywords for DLRN. Also, a commit that has been purged from the
database cannot be promoted.

Normal response codes: 201

Error response codes: 400, 403, 410, 415, 500

Request:

The JSON input will contain an array where each item contains:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of the repo to be promoted

	distro_hash

	string

	distro_hash of the repo to be promoted

	extended_hash

	string

	extended_hash of the repo to be promoted (optional). If not
specified, the API will take the last commit built with the
commit and distro hash.

	promote_name

	string

	name to be used for the promotion. In the current
implementation, this is the name of the symlink to be created

Response:

	Parameter

	Type

	Description

	commit_hash

	string

	commit_hash of the promoted repo

	distro_hash

	string

	distro_hash of the promoted repo

	extended_hash

	string

	extended_hash of the promoted repo

	repo_hash

	string

	Repository hash, composed of the commit_hash and short
distro_hash

	repo_url

	string

	Full URL of the promoted repository

	promote_name

	string

	name used for the promotion

	component

	string

	Component associated to the commit/distro hash

	timestamp

	integer

	Timestamp (in seconds since the epoch)

	user

	string

	user who created the promotion

	agggregate_hash

	string

	Hash of the aggregated repo file, when using components

This is the last promoted commit.

POST /api/remote/import

Import a commit built by another instance. This API call mimics the behavior of the
dlrn-remote command, with the only exception of not being able to specify a custom
rdoinfo location.

Normal response codes: 201

Error response codes: 400, 415, 500

Request:

	Parameter

	Type

	Description

	repo_url

	string

	Base repository URL for remotely generated repo

Response:

	Parameter

	Type

	Description

	repo_url

	string

	Base repository URL for imported remote repo

Running the API server using WSGI

Requirements

It is possible to run the DLRN API server as a WSGI process in Apache. To do
this, you need to install the following packages:

$ sudo yum -y install httpd mod_wsgi

WSGI file and httpd configuration

To run the application, you need to create a WSGI file. For example, create
/var/www/dlrn/dlrn-api.wsgi with the following contents:

import os
import sys
sys.path.append('/home/centos-master/.venv/lib/python2.7/site-packages/')

def application(environ, start_response):
 os.environ['CONFIG_FILE'] = environ['CONFIG_FILE']
 from dlrn.api import app
 return app(environ, start_response)

You need to change the path appended using sys.path.append to be the path
to the virtualenv where you have installed DLRN.

Then, create an httpd configuration file to load the WSGI application. The
following is an example file, named /etc/httpd/conf.d/wsgi-dlrn.conf:

<VirtualHost *>
 ServerName example.com

 WSGIDaemonProcess dlrn user=centos-master group=centos-master threads=5
 WSGIScriptAlias / /var/www/dlrn/dlrn-api-centos-master.wsgi
 SetEnv CONFIG_FILE /etc/dlrn/dlrn-api.cfg

 <Directory /var/www/dlrn>
 WSGIProcessGroup dlrn
 WSGIApplicationGroup %{GLOBAL}
 WSGIScriptReloading On
 WSGIPassAuthorization On
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Set CONFIG_FILE to the path of the DLRN configuration file, and make sure
you specify the right user and group for the WSGIDaemonProcess line.

Set DLRN_DEBUG to enable debug logs and set DLRN_LOG_FILE to the path
of a logfile (default false). If DLRN_LOG_FILE is not set, then the logs
are redirected to logs set by ErrorLog and CustomLog in the apache conf file.

Set API_AUTH_DEBUG to enable debug logs for API authentication (default
false) and set API_AUTH_LOG_FILE to the path of an API authentication
logfile. If API_AUTH_LOG_FILE is not set, then the logs are redirected to
logs set by ErrorLog and CustomLog in the apache conf file.

DLRN_DEBUG also specifies if debug when logs are redirected to logs set
by ErrorLog and CustomLog in the apache conf file.

Those variables are also applied within the CONFIG_FILE with
higher precedence.

DLRN API configuration

The DLRN API take a default configuration from file dlrn/api/config.py.
Since it may not match your actual configuration when deployed as an WSGI
application, you can create a configuration file, /etc/dlrn/dlrn-api.cfg
in the above example, with the following syntax:

DB_PATH = 'sqlite:////home/centos-master/DLRN/commits.sqlite'
REPO_PATH = '/home/centos-master/DLRN/data/repos'
CONFIG_FILE = 'projects.ini'

Where DB_PATH is the path to the SQLite database for your environment,
REPO_PATH will point to the base directory for the generated repositories,
and CONFIG_FILE will point to the projects.ini file used when running
DLRN.

User management

There is a command-line tool to manage DLRN API users:

usage: dlrn-user [-h] [--config-file CONFIG_FILE] {create,delete,update} ...

arguments:
 -h, --help show this help message and exit
 --config-file CONFIG_FILE
 Config file. Default: projects.ini

subcommands:
 available subcommands

 {create,delete,update}
 create Create a user
 delete Delete a user
 update Update a user

User creation

Use the create subcommand to create a new user.

$ dlrn-user create --username foo --password bar

If you do not specify a password in the command-line, you will be prompted to
enter one interactively.

User update

You can use the update subcommand to change user data. Currently, only the
password can be changed.

$ dlrn-user update --username foo --password new

User deletion

Use the delete subcommand to delete a user.

$ dlrn-user delete --username foo

The command will ask for confirmation, and you have to type “YES” (without the
quotes) in uppercase to delete the user. You can also avoid the confirmation
request by adding the --force parameter.

$ dlrn-user delete --username foo --force

GraphQL information

GraphQL schema

This page describes the schema definition used for the GraphQL types and queries
available through the DLRN API.

You can generate a human-readable version of the schema by running the following
script:

from dlrn.api.graphql import schema
from graphql.utils import schema_printer

schema_str = schema_printer.print_schema(schema)
print(schema_str)

Types

The Commit type is converted from its schema in the database.

.. code-block:

type CIVote {
 id: ID!
 commitId: Int!
 ciName: String
 ciUrl: String
 ciVote: Boolean
 ciInProgress: Boolean
 timestamp: Int
 notes: String
 user: String
 component: String
 commit: Commit
}

Like Commit type, CIVote is converted from its schema to database.

The CIVoteAgg is converted from CIVote_Aggregate DB schema.

The PackageStatus type is generated directly in Graphene.

Queries

All queries should conform to the GraphQL language. When more than one item is
returned, they will be sorted by descending id order, which means newer commits
or CI Votes are displayed first.

Note that you will need to specify which fields from the return type you want
to get. See the GraphQL tutorial [https://graphql.org/learn/queries/]
for additional details.

Available queries:

	commits

Arguments:

	projectName: limit the results to the commits belonging to the specified project name.

	component: limit the results to the commits belonging to the specified component.

	status: limit the results to the commits with the specified status.

	offset: return the results after the specified entry.

	limit: return a maximum amount of commits (100 by default, cannot be higher than 100).

	commitHash: limit the results to the commits containing the specified commit hash.

	distroHash: limit the results to the commits containing the specified distro hash.

	extendedHash: limit the results to the commits containing the specified extended hash.
In this case, extendedHash can contain wildcards in SQL format, so setting extendedHash
to “foo%” in the query will return all commits with an extended hash that starts by “foo”.

	civote

Arguments:
- commitId: limit the results to the civote belonging to the commit id.
- ciName: limit the results to the civote belonging to the CI name.
- ciVote: limit the results to the civote belonging to the voting CI.
- ciInProgress: limit the results to the civote belonging to “In Progress” state.
- timestamp: limit the results to the civote belonging to the specified timestamp.
- user: limit the results to the civote belonging to the specified user.
- component: limit the results to the civote belonging to the specified component.
- offset: return the results after the specified entry.
- limit: return a maximum amount of commits (100 by default, cannot be higher than 100).

	civoteAgg

Arguments:
- refHash: limit the results to the civote_aggregation belonging to the specified reference hash.
- ciName: limit the results to the civote_aggregation belonging to the specified CI name.
- ciVote: limit the results to the civote_aggregation belonging to the specified CI vote.
- ciInProgress: limit the results to the civote_aggregation belonging to the specified CI in progress state.
- timestamp: limit the results to the civote_aggregation belonging to the specified timestamp.
- user: limit the results to the civote_aggregation belonging to the specified user.
- offset: return the results after the specified entry.
- limit: return a maximum amount of commits (100 by default, cannot be higher than 100).

	packageStatus

Arguments:
- projectName: limit the results to the status of the specified project name.
- status: limit the results to the packages with the specified status.

Querying the GraphQL endpoint

As described in the GraphQL website [https://graphql.org/learn/serving-over-http/#http-methods-headers-and-body],
when GraphQL is served over HTTP it is possible to run queries using both GET and POST
methods.

GET example

$ curl 'http://localhost:5000/api/graphql?query=\{commits\{component%20projectName\}\}'

Note that in the curl command line we are escaping braces and replacing blank spaces
with %20. The equivalent query when run from a broswer would be
http://localhost:5000/api/graphql?query={ commits { component projectName } }.

POST example

$ curl http://localhost:5000/api/graphql -H POST -d 'query={ commits { component projectName } }'

In this case, we are using a POST method, and the query is JSON-encoded. Note that it is
also possible to use a GET method with a JSON-encoded payload.

Contributing

Setting up a development environment in an OpenStack VM using cloud-init

The following cloud-config script can be passed as a –user-data argument to
nova boot. This will result in a fully operational DLRN environment to
hack on.

#cloud-config
disable_root: 0

users:
 - default

package_upgrade: true

packages:
 - vim
 - git
 - policycoreutils-python-utils

runcmd:
 - yum -y install epel-release
 - yum -y install puppet
 - git clone https://github.com/rdo-infra/puppet-dlrn /root/puppet-dlrn
 - cd /root/puppet-dlrn
 - puppet module build
 - puppet module install pkg/jpena-dlrn-*.tar.gz
 - cp /root/puppet-dlrn/examples/common.yaml /var/lib/hiera
 - puppet apply --debug /root/puppet-dlrn/examples/site.pp 2>&1 | tee /root/puppet.log

final_message: "DLRN installed, after $UPTIME seconds."

Setting up a development environment manually

Follow the instructions from the Setup section [https://github.com/softwarefactory-project/DLRN/blob/master/README.rst#setup] of README.rst [https://github.com/softwarefactory-project/DLRN/blob/master/README.rst] to manually setup a development environment.

Submitting pull requests

Pull requests submitted through GitHub will be ignored. They should be sent
to SoftwareFactory’s Gerrit instead, using git-review. The usual workflow is:

$ sudo yum install git-review (you can also use pip install if needed)
$ git clone https://github.com/softwarefactory-project/DLRN
<edit your files here>
$ git add <your edited files>
$ git commit
$ git review

Once submitted, your change request will show up here:

https://softwarefactory-project.io/r/#/q/project:DLRN+status:open

Generating the documentation

Please note that the RDO Packaging Documentation [https://www.rdoproject.org/documentation/packaging/] also contains
instructions for DLRN.

The documentation is generated with Sphinx [http://sphinx-doc.org/]. To generate
the documentation, go to the documentation directory and run the make file:

$ cd DLRN/doc/source
$ make html

The output will be in DLRN/doc/build/html

DLRN internals

This document aims at describing the inner workings of DLRN, so a new
contributor can get up to speed as quickly as possible.

Main concepts

The following basic concepts are used in DLRN. You’ll need to get used to them
if you want to understand the code:

	Source Git: DLRN will always take the source code to build the package from a
Git repository, regardless of the Source0 entry in the spec file.

	Distgit: spec files are assumed to be present in a Git repository. DLRN has a
driver-based mechanism to allow different options for the distgit location,
see the Package Info Drivers section.

	Project: each project corresponds with a package to be built. A package may
define a number of subpackages in the spec file, but a single source RPM file
is always created. The DLRN driver mechanism allows us to have different
sources of information for the project list, such as
rdoinfo [https://github.com/redhat-openstack/rdoinfo] or a single git
repo.

	Commit: a commit is the main abstraction used by DLRN. It aggregates all
information related to each package built, such as:

	Project name

	Hash of the commit from the source git

	Hash of the commit from the distgit

	Build status (successful or not)

	Name of the rpms

Directory structure

The DLRN codebase is structured as follows:

	doc/: project documentation

	scripts/: several useful scripts, used by CI and DLRN itself, plus some other
miscellaneous files.

	build_rpm.sh: script that calls mock to build rpm files (see the
Building packages section).

	submit_review.sh: script to open a Gerrit review after a build failure (see
the Error reporting section).

	centos.cfg, centos8.cfg, fedora.cfg and redhat.cfg: base mock
configurations for CentOS 7, CentOS 8, Fedora and RHEL 8 builders. For a RHEL 8
builder, you will have to make sure the appropriate base repos are configured,
since those are not publicly available. These base configurations can be located
in a separate directory, defined by the configdir option in projects.ini.

	dlrn/: main DLRN code

	build.py: build functions, described in detail in the Building packages
section.

	config.py: general configuration management.

	db.py: database-related code.

	notifications.py: error reporting functions.

	purge.py: dlrn-purge command, used to reduce the disk usage on long-running
instances.

	reporting.py: reporting functions, create simple HTML reports of the
repository status.

	repositories.py: functions required to clone a git repo and get information
from it.

	rpmspecfile.py: basic rpm spec file parsing to be able to get package names
and dependencies.

	rsync.py: synchronizes yum repositories between servers, used to have a
multi-node architecture.

	shell.py: main file, reads command-line arguments and launches the build
process.

	utils.py: miscellaneous utilities.

	api/: DLRN API code, described in detail in its own page.

	drivers/: modular drivers for project listing and distgit location,
described in the Package Info Drivers section. We are also including modular
drivers for different build methods.

	migrations/: Alembic scripts for database maintenance.

	stylesheets/: contains a CSS file used by the reporting module.

	templates/: contains Jinja2 templates, also used by the reporting module.

	tests/: unit tests.

High level algorithm

When DLRN is run, the following (simplified) sequence of events is executed:

fetch information for available projects
for each project
 find last processed commit
 refresh source git
 find last commit in source git and distgit
 if any commit is later than last_processed_commit
 add commit to list of commits to be processed
for each commit_to_be_processed
 build package
 create yum repo with built package and the latest versions of every other package
 if errors
 report via e-mail or Gerrit review if configured
 store commit in DB
 generate HTML report

Configuration

DLRN uses a simple INI file for its configuration. Most config options are
located in the [DEFAULT] section and read during startup. Only
driver-specific options have their own section.

The dlrn/config.py file defines a ConfigOptions class, that will create an
object including all parsed options.

Package Info Drivers

Package info drivers are derived from the PkgInfoDriver class
(see dlrn/drivers/pkginfo.py), and are used to:

	Define a list of projects (packages) to be built

	Define the source and distgit repos for each project

	Fetch the new commits for each project’s source and distgit repos

	Pre-process spec files, if needed

Each driver must provide the following methods:

	getpackages(). This method will return a list of dictionaries. Each
individual dict must contain the following mandatory keys (others are
optional):

	‘name’: package name

	‘upstream’: URL for source repo

	‘master-distgit’: URL for distgit repo

	‘maintainers’: list of e-mail addresses for package maintainers

	getinfo(). This method will return a list of commits to be processed for a
specific package.

	preprocess(). This method will run any required pre-processing for the
spec files. If the custom_preprocess variable is defined in projects.ini,
the external program(s) or script(s) defined in the variable will be executed as
the last step of the pre-processing.

	distgit_dir(). This method will return the distgit repo directory for a
given package name.

You can check the code of the existing
rdoinfo driver [https://github.com/softwarefactory-project/DLRN/blob/master/dlrn/drivers/rdoinfo.py]
and gitrepo driver [https://github.com/softwarefactory-project/DLRN/blob/master/dlrn/drivers/gitrepo.py]
to see their implementation specifics. If you create a new driver, you
need to add the project name to the projects.ini configuration file, and
if you need any new options, be sure to add them to a driver-specific section
(see the Configuration section for details).

Package Build Drivers

Package build drivers are derived from the BuildRPMDriver class
(see dlrn/drivers/buildrpm.py), and are used to perform the actual package
build from an SRPM file.

Each driver must provide the following method:

	build_package This method will take an output directory, where the SRPM
is located, and build it using the driver-specific method.

You can check the code of the existing
mock [https://github.com/softwarefactory-project/DLRN/blob/master/dlrn/drivers/mockdriver.py]
driver to see its implementation specifics. If you create a new driver, you
need to add the project name to the projects.ini configuration file, and
if you need any new options, be sure to add them to a driver-specific section
(see the Configuration section for details).

Building packages

The package build logic is included in build.py. There we have several
functions:

	build(). This is the function called externally. It gathers some
configuration options and parameters, then calls build_rpm_wrapper to
launch the build process and returns a list with the built rpms.

	build_rpm_wrapper(). This wrapper function prepares the mock configuration
file to be used during the build using the configuration. It will also add
the most current repository to the mock configuration, so we can use packages
in the current repository as dependencies during the build. Then, it will
spawn a Bash script, build_srpm.sh to build the source RPM, and call the
appropriate build driver to generate the binary RPM.

The build_srpm.sh script takes care of creating the source RPM. Some magic is
required to build it, specifically:

	The script tries to determine a version and release number for the package.
This version number should be compatible with the
Fedora guidelines [https://fedoraproject.org/wiki/Packaging:Versioning],
and allow upgrades from and to packages from stable releases, which is
not always easy. We use the following algorithm:

	For Python projects, take the output from python setup.py --version.
Most OpenStack projects use PBR, which gives us proper pre-versioning after a
tagged release.

	For Puppet projects, we take the version from the metadata.json or
Modulefile files, if available, and increase the .Z version if there are
any commits after the tagged release.

	For other projects, we take the version number from the latest git tag.

	If everything fails, default to version 0.0.1.

	The release number is always 0.<date>.<upstream source commit short hash>.

	A tarball is generated using python setup.py sdist for Python projects,
gem build for Ruby gems, and tar for any other project. Then, the spec file
is updated to use this tarball as Source0, and a source RPM is created.

The binary RPM is built from the SRPM using a the build driver specified in
projects.ini. This can be done using Mock, Copr, Brew, or any other tool,
provided that the required driver is available.

Hashed yum repositories

Each build is stored on a separate directory. A hashed structure is used for the
directories, such as cd/af/cdaf2c77d974d5e794909313dceb3554be69a42e_4b1619fe.
In this structure, cdaf2c77d974d5e794909313dceb3554be69a42e is the commit hash
for the source git repo, and 4b1619fe is the short hash for the distgit commit.
The first two directory levels (cd/af) are taken from the commit hash.

Component support

DLRN now supports the concept of components inside a repository. We can use
components to divide the packages in a repo into logical aggregations. For example,
in the OpenStack use case, we could have separate components for those packages
related to networking, compute, storage, etc.

Currently, only the RdoInfoDriver and DownstreamInfoDriver package info
drivers supports this. When components are defined, and enabled with the
use_components=True option in projects.ini, DLRN will change its behavior
in the following ways:

	Hashed yum repositories will change their paths, including a component part. For
example, a commit for a package in the compute component will use hash
component/compute/cd/af/cdaf2c77d974d5e794909313dceb3554be69a42e_4b1619fe.

	Each component will have a separate repository (component/compute,
component/network``and so on), and the ``current and consistent symlinks
will also be relative to each component.

	To preserve compatibility with instances without component support, the top-level
current and consistent symlinks will be replaced by a current and
consistent directory. Each directory will contain a single .repo file, and
that file will aggregate the .repo files for the current/consistent repositories
of all components.

Post-build actions

After a package is built, we need to create a package repository with the latest
version for every package in the project list. The post_build() function in
shell.py takes care of that. The idea behind this is that the repo for each
build will contain the most current version of each package to date. This
behavior can be skipped if the --no-repo command-line option is provided, so
only the build package and logs will be stored.

To minimize the amount of storage used for each repo, DLRN does not copy the
packages to the current hashed directory. Instead, post_build() iterates
through the list of packages, finding the RPMs for their latest successful
builds, and symlinks them in the current hashed directory.

It is probably easier to understand with an example:

	Initially, we only have source commit 010b0a and distgit commit 020202 for
project foo, then its hashed repo will look like:

01/0b/010b0a_020202/foo-<version>.el7.centos.noarch.rpm

	Then, we build project bar, with source commit 030303 and distgit
commit 040404. Its hashed repo will be:

03/03/030303_040404/bar-<version>.el7.centos.noarch.rpm
03/03/030303_040404/foo-<version>.el7.centos.noarch.rpm -> ../../../01/0b/010b0a_020202/foo-<version>.el7.centos.noarch.rpm

And the same process will be followed for every new package.

Error reporting

DLRN allows two different ways to notify build errors, both included in
notifications.py:

	A notification e-mail, sent using the sendnotifymail() function. The mail
recipient list is taken from the maintainers project property.

	A Gerrit review. This option makes use of a utility script
submit_review.sh and the configured options in options.ini to create the
review. It also adds the project maintainers to the generated review.

API internals

The API is described in detail in its own documentation.

Index

 _static/ajax-loader.gif

_images/DLRN.png
A o\ fv

\\\ \
\J\ ‘\\A \\\ \]

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to DLRN’s documentation!

 		
 Introduction

 		
 Installation

 		
 Configuration

 		
 Configuring for gerrit

 		
 Configuring your httpd

 		
 Database support

 		
 Database migration

 		
 Adding a custom mock base configuration

 		
 Repositories

 		
 Building new packages and repositories

 		
 DLRN repository: delorean-deps

 		
 DLRN repository: current

 		
 DLRN repository: consistent

 		
 DLRN repository: current-passed-ci

 		
 Usage

 		
 Parameters

 		
 Quickstart single package build

 		
 Full build

 		
 Advanced single package build

 		
 Output and log files

 		
 Importing commits built by another DLRN instance

 		
 Purging old commits

 		
 Building only the last commit

 		
 Troubleshooting

 		
 Other requirements

 		
 API issues

 		
 API definition

 		
 General information

 		
 API calls

 		
 GET /api/health

 		
 POST /api/health

 		
 GET /api/last_tested_repo

 		
 GET /api/repo_status

 		
 GET /api/agg_status

 		
 GET /api/promotions

 		
 GET /api/metrics/builds

 		
 GET /metrics

 		
 GET /api/graphql

 		
 POST /api/last_tested_repo

 		
 POST /api/report_result

 		
 POST /api/promote

 		
 POST /api/promote-batch

 		
 POST /api/remote/import

 		
 Running the API server using WSGI

 		
 Requirements

 		
 WSGI file and httpd configuration

 		
 DLRN API configuration

 		
 User management

 		
 User creation

 		
 User update

 		
 User deletion

 		
 GraphQL information

 		
 GraphQL schema

 		
 Types

 		
 Queries

 		
 Querying the GraphQL endpoint

 		
 GET example

 		
 POST example

 		
 Contributing

 		
 Setting up a development environment in an OpenStack VM using cloud-init

 		
 Setting up a development environment manually

 		
 Submitting pull requests

 		
 Generating the documentation

 		
 DLRN internals

 		
 Main concepts

 		
 Directory structure

 		
 High level algorithm

 		
 Configuration

 		
 Package Info Drivers

 		
 Package Build Drivers

 		
 Building packages

 		
 Hashed yum repositories

 		
 Component support

 		
 Post-build actions

 		
 Error reporting

 		
 API internals

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

